Mathematical Identities#

Trigonometric identities#

\(\cos(\cdot)\) to \(\sin(\cdot)\)#

\[\begin{align*} A \cos(\omega t + B) &= A \sin(\frac{\pi}{2} - (\omega t + B))\\ &= -A \sin(\omega t + B -\frac{\pi}{2}) \end{align*}\]

\(\sin(\cdot)\) to \(\cos(\cdot)\)#

\[\begin{align*} A \sin(\omega t + B) &= -A \cos(\omega t + B +\frac{\pi}{2}) \end{align*}\]

Trigonometric Derivatives#

Derivative of \(\cos(\omega t + \theta)\)#

\[\begin{align*} \frac{d}{dt} \left ( \cos(\omega t + \theta) \right ) = - \omega \sin(\omega t + \theta) \end{align*}\]

Derivative of \(\sin(\omega t + \theta)\)#

\[\begin{align*} \frac{d}{dt} \left ( \sin(\omega t + \theta) \right ) = \omega \cos(\omega t + \theta) \end{align*}\]

Trigonometric Integrals#

Integral of \(\cos(\omega t + \theta)\)#

\[\begin{align*} \int \cos(\omega t + \theta) dt &= \frac{1}{\omega} \sin(\omega t + \theta) + c \end{align*}\]

Integral of \(\sin(\omega t + \theta)\)#

\[\begin{align*} \int \sin(\omega t + \theta) dt &= - \frac{1}{\omega} \cos(\omega t + \theta) + c \end{align*}\]

Adding two cosine waves of the same frequency#

\[\begin{align*} A \cos(\omega t + B) + C \cos(\omega t + D) &= \Re\{A e^{j (\omega t + B)} + C e^{j(\omega t + D)}\}\\ &= \Re\{e^{j\omega t}(A e^{j B} + C e^{jD})\}\\ &= \Re\{e^{j\omega t} ( A \cos(B) + C \cos(D) \\ &+ j (A \sin(B) + C \sin(D))) \}\\ &= \Re\{e^{j\omega t} \\ & \small \sqrt{(A \cos(B) + C \cos(D))^2 + (A \sin(B) + C \sin(D))^2} \\ & e^{j \arctan(A \sin(B) + C \sin(D), A \cos(B) + C \cos(D))}\} \end{align*}\]

which yields

\[\begin{split} \sqrt{(A \cos(B) + C \cos(D))^2 + (A \sin(B) + C \sin(D))^2} \\ \cos(\omega t + \arctan(A \sin(B) + C \sin(D), A \cos(B) + C \cos(D))) \end{split}\]